Monday 22 December, 2014

`Messy` experiment helps solve physics mystery of cornstarch

Published On: Fri, Jul 13th, 2012 | Physics | By BioNews

Cornstarch, which is bought by most people to make custard and gravy, has been used by two researchers to solve a longstanding physics problem with a substance known to generations of Dr. Seuss readers as “Oobleck,” and to scientists as a non-Newtonian liquid.

This substance, a liquid that can instantaneously turn into a solid under the force of a sudden impact, behaves in surprising ways.

It consists of a simple mixture of cornstarch and water, and adults can actually run across a vat of this liquid, as has been done many times on television game shows and programs such as MythBusters.

Scott Waitukaitis and Heinrich Jaeger from The University of Chicago suspect that many similarly constituted suspensions — liquids laden with micron-sized particles — will behave exactly the same way. Scientists and engineers have attempted to explain the underlying physics of this phenomenon since the 1930s, but with incomplete success.

Current explanations predict a thickening of the suspension when it’s subjected to the push-pull of shearing forces, but fall far short of accounting for the large forces needed to keep an adult high and dry while running across a pool of the stuff.

Now Waitukaitis and Jaeger have reported how compressive forces can generate a rapidly growing, solid-like mass in the suspension. The study culminates a long struggle to understand a phenomenon that has elicited a wide range of explanations over the years.

“We found that when you hit the suspension, a solid-like column grows below the impact site,” UChicago News quoted Waitukaitis as saying.

“The way it grows is similar to how a snowplow works. If I push a shovel in loose snow, a big pile of compacted snow grows out in front of the shovel, which makes it harder and harder for me to push,” he said.

With the suspension, the “snowplow” is caused by individual cornstarch grains piling up in front of the impacting object and becoming temporarily jammed after compression has halted all movement.

The UChicago experiment highlights how complex and often puzzling phenomena emerge from simple ingredients, and how established ways of looking at them need to be revisited with the benefit of modern technology.

Historically, most experiments have looked at relatively small volumes of suspensions, and primarily under conditions of continuous shearing.

“To notice a transient phenomenon of the type that we describe, you need a large setup and you need to look very fast,” Jaeger said.

The UChicago experiment did just that with a combination of high- and low-tech instruments, including force sensors, laser sheets, X-rays, high-speed cameras taking images at 10,000 frames a second, and an industrial cement mixer.

“It’s an incredibly messy experiment,” Waitukaitis said.

“I have a blue jumpsuit I wear all day. When I do these experiments, I’m totally covered in cornstarch,” he said.

The experiment was the first to investigate direct compression in these suspensions. The experiment shows that driving a rod into the cornstarch and water mixture easily generated stresses 100 times greater than the largest stresses encountered during shear.

The researchers found that their impacting rod initiated a shock-like, moving front that starts directly beneath the impacting object and then grows downward, transforming the initially liquid suspension into a temporarily jammed state.

As the front of this jammed region moves forward, it transforms the liquid region directly ahead of it. “It essentially grows its own solid as it propagates,” Jaeger said.

The UChicago scientists called this process “impact-activated solidification.” Impacts typically are destructive processes but in the suspension they actually lead to the creation of a solid from a liquid, although only temporarily.

The study has been published in the journal Nature.

Leave a comment

XHTML: You can use these html tags: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

More from Physics
  • Lasers recreate supernova explosion in lab!
  • Waste sulphur to produce cheap infra-red devices
  • Device to make faster, cooler computers is here
  • Key Processes of Photosynthesis Simulated on the Quantum Level
  • ‘God particle’ theorists receive Nobel Prize in physics
  • Visit us on Google+