Wednesday 01 October, 2014

How bacteria build their nano-syringe

Published On: Mon, Jun 14th, 2010 | Nanotechnology | By BioNews

For the first time ever, scientists have succeeded in explaining basic principles of the bacterial transport channel which is formed like a syringe and helps the microorganism deliver the ”virulence factors” to outwit the host”s immune system.

The study, by researchers from the Max Planck Society and the Federal Institute for Materials Research and Testing, appears in Nature Structural & Molecular Biology.

This is an important starting point for the development of new drugs that might interfere considerably earlier than antibiotics in the course of infection.

Most of the bacteria are fended off by our immune system.

To execute a successful infection, bacteria must therefore manipulate the host to ensure their survival.

They secrete virulence factors through a transport channel located in the bacterial membrane.

Some bacteria, such as the causative agents of dysentery, food poisoning, typhoid fever, and pest, have developed a specialized transport mechanism called the Type three secretion system.

Electron microscopy reveals that this structure is formed like a syringe: the base of the syringe is imbedded in the bacterial membrane and the needle protrudes out of the bacteria.

With this apparatus bacteria can inject virulence factors directly into the host cell.

So far, little has been known about how bacteria build this nano-syringe.

Scientists from the Max Planck Institute for Infection Biology in Berlin, the Max Planck Institute for Biophysical Chemistry in Göttingen, and the Federal Institute for Materials Research and Testing have now succeeded in elucidating fundamental principles of the needle assembly.

This was made possible by reconstitution experiments which allowed them to study the assembly of proteins into a needle in the test tube.

The close observation of these events revealed how the proteins are assembled into a syringe: the bacterium synthesizes the proteins in the cell interior, transports them through the syringe to the outside, and stacks them one after the other onto the tip of the growing needle.

The scientists could also show that the proteins change their three-dimensional structure during the assembly process. They were able to pinpoint the exact structural changes down to the single amino acid level.

These results open new perspectives in the development of medicines that might interfere in the course of infection much earlier than antibiotics.

These so-called anti-infectives could inhibit the assembly of the needle and the injection of virulence factors into the host cell.

This would be a major advantage over antibiotics, which have to travel through the membrane into the bacteria to be able to kill it.

Furthermore, antibiotics cannot distinguish between good and evil, i.e. disease-causing, bacteria, often leading to unwanted side effects.

Lastly, the use of anti-infectives would circumvent the problem of antibiotic resistance development.

Leave a comment

XHTML: You can use these html tags: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

More from Nanotechnology
  • When diamonds are not a girl’s best friend!
  • Novel microscope to reveal nano truths
  • Now, a detector to distinguish ‘sour’ oil from ‘sweet’
  • UV lamp of the future is here
  • White House names Indian-American “Solar Champion of Change”
  • Visit us on Google+