Thursday 24 April, 2014

Scientists demonstrate highly directional semiconductor lasers for the first time

Published On: Mon, Jul 28th, 2008 | Photonics | By BioNews

An international team of scientists have demonstrated, for the first time, highly directional semiconductor lasers with a much smaller beam divergence than conventional ones, which could pave the way for a wide range of applications in photonics and communications.

The team consisted of scientists from Harvard University and researchers from Hamamatsu Photonics in Hamamatsu City, Japan.

While semiconductor lasers are widely used in everyday products such as communication devices, optical recording technologies, and laser printers, they suffer from poor directionality.

Divergent beams from semiconductor lasers are focused or collimated with lenses that typically require meticulous optical alignment—and in some cases bulky optics.

To get around such conventional limitations, the researchers sculpted a metallic structure, dubbed a plasmonic collimator, consisting of an aperture and a periodic pattern of sub-wavelength grooves, directly on the facet of a quantum cascade laser emitting at a wavelength of ten microns, in the invisible part of the spectrum known as the mid-infrared where the atmosphere is transparent.

In doing so, the team was able to dramatically reduce the divergence angle of the beam emerging from the laser from a factor of twenty-five down to just a few degrees in the vertical direction.

The laser maintained a high output optical power and could be used for long range chemical sensing in the atmosphere, including homeland security and environmental monitoring, without requiring bulky collimating optics.

According to Federico Capasso, Robert L. Wallace Professor of Applied Physics at Harvard University, “Our innovation is applicable to edge-emitting as well as surface-emitting semiconductor lasers operating at any wavelength—all the way from visible to telecom ones and beyond.”

“It is an important first step towards beam engineering of lasers with unprecedented flexibility, tailored for specific applications,” he added.

“In the future, we envision being able to achieve total control of the spatial emission pattern of semiconductor lasers such as a fully collimated beam, small divergence beams in multiple directions, and beams that can be steered over a wide angle,” said Capasso.

Such an advance could also lead to a wide range of applications at the shorter wavelengths used for optical communications, according to Dr. Hirofumi Kan, General Manager of the Laser Group.

“A very narrow angular spread of the laser beam can greatly reduce the complexity and cost of optical systems by eliminating the need for the lenses to couple light into optical fibers and waveguides,” he said. (ANI)

Leave a comment

XHTML: You can use these html tags: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>

More from Photonics
  • Organic cells bring flexible solar devices closer to reality
  • Soon, world’s most efficient flexible OLED on plastic!
  • Breakthrough in photonic chips can lead to more computer data storage
  • New 3-D photonic crystal opens new avenues for solar cells, lasers
  • Soon, a ‘magic mirror’ to let you try outfits without getting undressed!
  • Visit us on Google+